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A method proposed recently is used for the evaluation of
the small signal gain in various free electron laser con-
figurations. The theory is applied to (a) the wiggler-
free free electron laser with a uniform axial guide mag-
netic field and arbitrary direction of propagation of the
amplified radiation and (b) the free electron laser with
the axially modulated guide field (lowbitrom). It is
demonstrated that the new approach simplifies the gain
calculation significantly in comparison with the tradi-
tional method.
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Introduction

A novel method was recently proposed (1) to calculate
small-signal gain in free electron lasers. The method
combined classical and quantum mechanical formalisms by
using the correspondence principle. This hybrid approach
may be applied to the calculation of a gain in a variety
of wave-generation configurations where the use of the
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conventional classical treatments usually leads to tedious
algebraic manipulations.

In this paper the new.method will be applied to the
case of wave-amplification by guided relativistic electron
beams. First the guide magnetic field will be assumed to
be uniform and the wave will propagate at an arbitrary an-
gle to the direction of the guide field. Ve will use the
term "wiggler-free free electron laser" for this config-
uration (2). Useful examples of the parallel and nearly
parallel propagation will be considered. The remaining
part of the paper will deal with the small signal gain
characterizing the free electron laser with the axially
modulated guide field [Lowbitron (3)].

The Method

In the previous paper (1), an expression was derived
for the energy gain by an electron interacting with N
uncorrelated plane electromagnetic waves in the presence
of combined helical pump and. axial guide magnetic field.
Correct to the first order in terms of. the amplitude of
the perturbing electric field Eg, the gain was shown to
obey

S = V21 An , (1)
where : eEO i ‘
A = B e“ (2)
2V2m .
and N
n = Z coscbi . (3)
i=A

Here ¢i are random quantities defined within an additive
constant -by the random ‘relative phases of the waves. B in
Eq. (2) ‘is wL/u where w and u are the perpendicular and
paraliel electron velocities and L is the length of the
laser. 6 is vr/2 where v = kgqu - w(l - u/c) is the reso-
nance mismatch parameter (kg is the wavevector of the
pump) and T is the time the electron passes the inter-
action region. Using the correspondence principle and
employing the detailed balancing arguments, the net energy
gain was shown to be
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3
L
W m

= - 24 g2ure)) (4)

; 8c  do

1
=

where wz = 4Wnez/m, n is the electron density, m and € are
the electron mass and energy respectively, and F(8) is

F(0) = (Sénef (5)

We will show in this paper that this calculation
procedure can be applied to a variety of free electron
laser configurations.

A Uniform Guide Magnetic Field

As a first example, let us consider an electron beam
propagating along a uniform guide magnetic field Bp

Let

5, = 8,5 ®

Assume that an electron interacts with N plane
electromagnetic waves of equal amplitude Ep and propagat-—
ing along a given direction E/LE[

N

E = E, E E:;os{kfr - uwt + ¢j) (7N
: =1
E; and Y. are the random polarization vectors and phases
respectively. 1In the zeroth order the electron velocity
and position are described by

v, (t) = v, expli¢ +1i =— (£ - t.)]
o o O
(8)
PRI -
00 .y R
ry(t) = - ——ﬁ——f-&xpllu i %5 (t - t0)1 + rag
where complex notations are used and v, = vy + 1ivgy;
ry, =x + iy-ty in Eq. (8) is the time moment the electron

enters the interaction region, Q = eBO/mc is the cyclo- -
tron frequency, Yo is the zeroth order value of y(= e/mec?)
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and r;q 1is the coordinate of the gyration center of the
electron. Let us assume now that the wave is a TE linear-
ly polarized wave. Then the wave electric field is

__ N o
E = iE, Z cos(kzz + k,x - wt + i.'Jj). o (9)

|—'I

Consider now the c]LLLrﬂﬂ energy COﬂ%d”vdLlon aquat lon
de _ _ ¢ Re(v,T) (10)
dt ==

We will find the energy change of the electrons in the
beam by integrating Eq. (10) along the unperturbed orbits
‘described by z = u(t - t.) where u is the unperturbed
akial velocity and x being the real part of r, in Eq. (8).

The interaction includes all the harmonics of the
cyclotron frequency. Indeed,

* 1V,0E
o - (G B

exp{l[ﬂ——-+(n u - @)t + dio,,°
g ok A

(11)

where t' is the time measured with respect to the moment
the unperturbed ectron passes the center of the inter-

action region, t' =t - tg - t/2, T = L/u, L is the laser
length, ajy = [ Q/Y + (ku - w)]T/2 + kyx, - Lr/2 + 29
+ /2 - wty + wj’ x. = real (r,5), and y= V_OYO/Z

The energy change of the electrons is

/2 y
£ = —e . Re(v,E )dt' (12)
-1 /2 ST
If the nth harmonic is in resonance, namely
voo= nQ/yO + (kZu -w) 20 (13)

the contribution of the other harmonics is negligible and
(12) becomes
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ev, .E

N
_ 1070 sin .
Ae = — Jn_l(xj))L ’ Z:l suwnj o (14)
J=

2u 6

where 6 = v 1/2. The last expression has the same form
as Eq. (2) With B = —(VLO/U)J _l(w)L. The analysis of
Ref. (1) thus may be applied ﬂere too. Following Eq. (&)
the net power gain is

2 2
L )1 A i;[—a:; F(O)] (15)

As in the cases considered in Ref. (1) the main con-
tribution in the last expression comes from the derivative
d6/de. The dependence of various electron parameters on
its energy e can be found by using the exact constant—of-
motion characterizing an electron in combined uniform guide
magnetic field and an electromagnetic wave with the elec-
tric vector perpendicular to both the guide field and the
direction of propagation of the wave. In such a situation

_Y(kchu - ufc) = const. (16)

Using the last expression,

Qg_=(kzc/w - u/c) ar
dy Y
and
2
ky
T o (18)
€ 2me Y

where the small factor v, has been neglected. The gain,
thus, becomes

S P Y g2
- Vi “1ogqF 3
_'p ; _
4 -16( u ) RS L 19)

This expression agrees with the previous result which was
obtained for n=1, Ref. (2), derived for the case
k,c/w << 1, ¥ = 0, and J,1(P) = GD 1

o
=
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~ Another interesting example 1s when the wave propa-
gates'barallel to the magnetic field. Then k, = 0 and
Fq. (19) yields zero gain. Nevertheless, the gain propor-
tional to L? still exists. As before, the dependences of
v, and u on € are found on using the constant-of-motion
[Ea. (16)] where ch/w =1, and v2 = (1 - vj_— u?)"?,
Eq. (15) for the gain then yields

(29)
2 2<2 L 1) 2
wp L2 [2(l—u) + Va0 u2 u ]sin2e VLOGSLnZG
P=-"3% 2 T T 22
8c Y §] 87u

which is similar to the result obtained by Ride and
Colson (4).

The Lowbitron

A considerable study has been performed by M.I.T.
researchers on the theory of the lowbitron (3). In this
device the electrons are propagating along a modulated
axial magnetic field which can be approximated (near the
axis) by

. 8B
. EO = ezBO[l + BO 81nkoz] (21)

The momentum equation in such a magnetic field yields

the following solution for the perpendicular velocity of
the electrons (22)

et P
j
Here we substituted z = u{t - t.) since the axial
velocity of the electrons remains constant.

Vy = Vag exp{i{% +j¥~
0

As before, the electron beam interacts with N plane
electromagnetic waves with random polarizations propaga-
ting parallel to the magnetic field. Then the electric
field vector that the electron experiences at z is

N :
io, Y
— - . 23
E EO §—1 e j cos(kz - wt + wj) (23)
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Using the same notations as for the case of uniform guide
magnetic field, we can express the work done on the
electrons by the real part of v,E", where

% v,~E
v,B = Z ( = °>Jn<b>exp[i<ant' + 8,0 (24)

with £n = w(u/c - 1) + nkgu + 0/vp; By = n(kOuT/Z + 7/2)

+ (¢ = o5 + Q1/2yg) + (ku - w)T/2 - wTy + Pl and

b=~ Q5B/YoBok0U An assumption was made that £_ = 0, so
that only the resonant terms in the sum in Eq. (22) were
retained. The energy change of the electrons is found

by integrating Eq. (12)

elo 1y clnr

:;“-.i-: s o T \t)jL —_— E COSP (25)

where n, = £ t/2. Again Friedland's analysis (1) is
applied and yields for the gain

- . .P v ar -2
T =~ " _Jn(b) (26)

Note that since the magnetic field has only an axial
component, y(l - u) is still a constant—-of-motion. Using
this fact, we obtain

_n . L nkO (27)

2 :
2mc Yu

and finally, the gain becomes

2 2

) 10 3
r=-—2= C)nkJ(b)dFL (28)
3 u
16¢7y

The last expression for the gain agrees with that derived
in Ref. (5).
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